
Solving a Network Design Problem

Alain Chabrier (achabrier@ilog.fr)
ILOG Spain
Gobelas 21
28023 Madrid
Spain

Emilie Danna (edanna@ilog.fr)
ILOG SA
9 rue de Verdun
F-94253 Gentilly Cedex
France

Laboratoire d’Informatique d’Avignon.
CRNS - FRE 2487
339, chemin des Meinajariès
Agroparc, BP 1228
F-84911 Avignon Cedex 9
France

Claude Le Pape (clepape@ilog.fr) and Laurent Perron
(lperron@ilog.fr)
ILOG SA
9 rue de Verdun
F-94253 Gentilly Cedex
France

Abstract. Industrial optimization applications must be “robust,” i.e., they must
provide good solutions to problem instances of different size and numerical char-
acteristics, and continue to work well when side constraints are added. This paper
presents a case study that addresses this requirement and its consequences on the
applicability of different optimization techniques. An extensive benchmark suite,
built on real network design data, is used to test multiple algorithms for robustness
against variations in problem size, numerical characteristics, and side constraints.
The experimental results illustrate the performance discrepancies that have occurred
and how some have been corrected. In the end, the results suggest that we shall
remain very humble when assessing the adequacy of a given algorithm for a given
problem, and that a new generation of public optimization benchmark suites is
needed for the academic community to attack the issue of algorithm robustness as
it is encountered in industrial settings.

Keywords: Network Design, Constraint Programming, Mixed Integer Program-
ming, Branch and Price, Industrial Benchmark

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



Keywords: Network Design, Constraint Programming, Mixed Integer Program-
ming, Branch and Price, Industrial Benchmark

Introduction

In the design and development of industrial optimization applications,
one major concern is that the optimization algorithm must be robust.
By “robust,” we mean not only that the algorithm must provide “good”
solutions to problem instances of different size and numerical charac-
teristics, but also that the algorithm must continue to work well when
constraints are added or removed. This expectation is heightened in
constraint programming as its inherent flexibility is often put forward
as its main advantage over other optimization techniques. Yet this re-
quirement for robustness is rarely recognized as the top priority when
the application is designed. Similarly, the benchmark problem suites
that are used by the academic community generally do not reflect this
requirement. In practice, it has important effects on the reinforcement
of problem formulation, search management, the advantages of parallel
search, the applicability of different optimization techniques including
hybrid combinations, etc. This paper presents a specific case study in
which such questions are addressed.

An extensive benchmark suite, presented in Section 1, has been built
on the basis of real network design data provided by France Telecom
R&D (Bernhard et al., 2002). The suite includes three series of problem
instances corresponding to different characteristics of the numerical
data. In each series, seven instances of different size are provided.
In addition, six potential side constraints are defined, leading to 64
versions of each instance. The goal is to design an algorithm which
provides the best results on average when launched on each of the
3 ∗ 7 ∗ 64 = 1344 instances with a CPU time limit of 10 minutes.
Indeed, the network designer wants to get a good cost estimate in
a few minutes. In some cases, this estimate will be refined through
an overnight run. The differences between the 1344 instances make it
hard to design an algorithm that performs well on all instances. Note
that in the context of the current application, both the introduction
of new technologies and the evolution of network usage can have an
impact on problem size, numerical characteristics, and side constraints.
It is believed that an optimization technique which applies well to all
of the 1344 problem instances is more likely to remain applicable in

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.



Solving a Network Design Problem 3

the future than an optimization technique which performs particularly
well on some instances, but fails to provide reasonable solutions on
some others. Note also that the 10-minute time limit corresponds to
a practical usage purpose. Running an algorithm for 10 minutes on
a multiprocessor machine might be perfectly acceptable, provided the
cost of the machine is not prohibitive. Most experimental results pro-
vided in this paper will correspond to the use of 10 minutes on a 700
MHz PC with 256 MB of RAM or to the use of 10 minutes on a 4*700
MHz PC with 2GB of RAM.

Several rounds of design, implementation, and experimentation have
been performed in the context of the ROCOCO project, supported by
the French MENRT, while the benchmark was in construction. The
aim of the first round (Section 2) was to select a few basic optimization
techniques for the problem. This round was focused on the easiest ver-
sions of rather small instances. This enabled a detailed examination of
the behavior of several algorithms and led to a better understanding of
the complex nature of the base problem. The second round (Section 3)
extended the study to middle-sized instances with different numerical
characteristics and side constraints. We selected, improved, and com-
pared three basic algorithms, based on mixed integer programming,
column generation, and constraint programming. At the end of this
round, the constraint programming algorithm appeared as the most
robust (which does not mean that the other algorithms could no longer
be improved).

The practical interest and the challenging nature of the benchmark
led us to use it well after the end of the ROCOCO project, as a test
case for new problem-solving methods. This includes new heuristics
developed in a generic mixed integer programming context, the use of
branch-and-price in place of simple column generation, and sequential
and parallel implementations of constraint-based large neighborhood
search. Sections 4, 5, and 6 present these recent evolutions of the three
basic algorithms. Section 7 summarizes the results and concludes. In the
end, both Constraint Programming with Large Neighborhood Search
and Branch and Price and Cut appear as good algorithms for solving
the problem.

1. The Network Design Benchmark

The benchmark problem consists in dimensioning the arcs of a telecom-
munications network, so that a number of commodities can be simul-
taneously routed over the network without exceeding the chosen arc
capacities. The capacity to be installed on an arc must be chosen in a



4

discrete set and the cost of each arc depends on the chosen capacity.
The objective is to minimize the total cost of the network.

In practice, two main variants of the problem can be considered.
In the “mono routing” variant, each commodity must be routed along
a unique path; in the “multi flow” variant, each commodity can be
split and routed along several paths. We have focused on the mono
routing variant which is more difficult and has been less studied in
the literature. Rothlauf, Goldberg, and Heinzl (Rothlauf et al., 2002)
have worked on a similar problem (data from Deutsche Telekom) but
require the resulting network to be a tree, which makes mono routing
equivalent to multi flow. Gabrel, Knippel, and Minoux (Gabrel et al.,
1999) and Bienstock and Günlük (Bienstock and Günlük, 1996) have
developed an exact method for network design problems with a discrete
set of possible arc capacities and multi flow routing. To our knowledge,
these studies are the closest to the one we report in this paper.

Given are a set of n nodes and a set of m arcs (i, j) between these
nodes. A set of d demands (commodities) is also defined. Each demand
associates to a pair of nodes (p, q) an integer quantity Dempq of flow to
be routed along a unique path from p to q. In principle, there could be
several demands for the same pair (p, q), in which case each demand can
be routed along a different path. Yet, to condense notation and keep
the problem description easy to read, we will use a triple (p, q,Dempq)
to represent such a demand.

For each arc (i, j), Kij possible capacities Capak
ij , 1 ≤ k ≤ Kij ,

are given, to which we add the null capacity Capa0
ij = 0. One and

only one of these Kij + 1 capacities must be chosen. However, it is
permitted to multiply this capacity by an integer between a given
minimal value Wmink

ij and a given maximal value Wmaxk
ij . Hence,

the problem consists in selecting for each arc (i, j) a capacity Capak
ij

and an integer coefficient wk
ij in [Wmink

ij ,Wmaxk
ij ]. The choices made

for the arcs (i, j) and (j, i) are linked. If capacity Capak
ij is retained

for arc (i, j) with a non-null coefficient wk
ij , then capacity Capak

ji must
be retained for arc (j, i) with the same coefficient wk

ji = wk
ij , and the

overall cost for both (i, j) and (j, i) is wk
ij ∗ Costkij .

Six classes of side constraints are defined. Each of them is optional,
leading to 64 variants of each problem instance, identified by a six-bit
vector. For example, “011000” indicates that only the second constraint
nomult and the third constraint symdem, as defined below, are active.

− The security (sec) constraint states that some demands must be
secured. For each node i, an indicator Riski states whether the
node is considered “risky” or “secured.” Similarly, for each arc



Solving a Network Design Problem 5

(i, j) and each k, 1 ≤ k ≤ Kij , an indicator Riskk
ij states whether

the arc (i, j) in configuration k is considered risky or secured. When
a demand must be secured, it is forbidden to route this demand
through a node or an arc that is not secured.

− The no capacity multiplier (nomult) constraint forbids the use of
capacity multipliers. For each arc (i, j), two cases must be con-
sidered: if there is a k with Wmink

ij ≥ 1, the choice of Capak
ij

with multiplier wk
ij = Wmink

ij is imposed; otherwise, the choice of
Capak

ij is free, but wk
ij ≤ 1 is imposed.

− The symmetric routing of symmetric demands (symdem) constraint
states that for each demand from p to q, if there exists a demand
from q to p, then the paths used to route these demands must
be symmetric. Similarly, if there are several demands between the
same nodes p and q, these demands must be routed on the same
path.

− The maximal number of bounds (bmax) constraint associates to
each demand (p, q,Dempq) a limit Bmaxpq on the number of bounds
(also called “hops”) used to route the demand, i.e., on the num-
ber of arcs in the path followed by the demand. In particular, if
Bmaxpq = 1, the demand must be routed directly on the arc (p, q).

− The maximal number of ports (pmax) constraint associates to each
node i a maximal number of incoming ports Pini and a maxi-
mal number of outgoing ports Pouti. For each node i, it imposes∑

j

∑
k:Capak

ij 6=0 wk
ij ≤ Pouti and

∑
j

∑
k:Capak

ji 6=0 wk
ji ≤ Pini.

− The maximal traffic (tmax) constraint associates to each node i a
limit Tmaxi on the total traffic managed by i. This includes the
traffic that starts from i (

∑
q 6=i Demiq), the traffic that ends at i

(
∑

p6=i Dempi), and the traffic that goes through i (the sum of the
demands Dempq,p 6=i,q 6=i, for which the chosen path goes through
i). Note that it is possible to transform this constraint into a limit
on the traffic that enters i (which must be smaller than or equal to
Tmaxi −

∑
q 6=i Demiq) or, equivalently, into a limit on the traffic

that leaves from i (which must be smaller than or equal to Tmaxi−∑
p6=i Dempi).

Twenty-one data files, organized in three series, are available. Each
data file is identified by its series (A, B, or C) and an integer that
indicates the number of nodes of the considered network. Series A
includes the smallest instances, from 4 to 10 nodes. Series B and C
include larger instances with 10, 11, 12, 15, 16, 20, and 25 nodes.



6

The optimal solutions to the 64 variants of A04, A05, A06, and A07,
are known. Proven optimal solutions are currently available for only 44
variants of A08, one variant of A09, one variant of A10, and 12 variants
of C10. This means 1030 instances are still open.

The instances of series B have more choices of capacities than the
instances of series A, which have more choices of capacities than the
instances of series C. So, in practice, instances of series B tend to be
harder because the search space is larger, whereas instances of series C
tend to be harder because each mistake has a higher relative cost. Some
instances of series C also exhibit special characteristics. For example,
in C10, constraints on the maximal number of ports per node impose
that the overall network is either a chain or a single loop; C16 consists
of extending such a loop; C11 includes cases in which Capak

ij = 0 and
Capak

ji > 0, which leads to an asymetric situation in terms of number
of ports; and C20 includes two types of traffic, with different security
and number of bounds constraints, between the same nodes.

2. Solving the Basic Problem

In the first round, five algorithms were developed and tested on the
simplest instances of the problem: series A with only the nomult and
symdem constraints active. Focusing on simple instances enabled us to
compute the optimal solutions of these instances and trace the behavior
of algorithms on the basic problem, without being confused by side
constraints. The drawback is that focusing on simple instances does not
allow the anticipation of the effect of side constraints. The same remark
holds for problem size: it is easier to understand what algorithmically
happens on small problems, but some algorithmic behaviors show up
on large problems that are not observable on smaller problems. Five
algorithms were tested:

− MIP: the CPLEX(Cplex, 2001) mixed integer programming algo-
rithm, with the emphasis on finding feasible solutions, applied to
a minor variant of the MIP formulation given in (Bernhard et al.,
2002).

− CG: a column generation algorithm, which consists of progressively
generating possible paths for each demand and possible capacities
for each arc. At each iteration, a linear programming solver is used
to select paths and capacities and guide the generation of new
paths and new capacities. In addition, a mixed integer version of
the linear program is regularly used to generate deasible solutions.



Solving a Network Design Problem 7

− CP: a simple constraint programming algorithm, based on ILOG
Solver(Solver, 2002) integer and set variables, developed by France
Telecom R&D.

− CP-PATH: a more complex algorithm which combines classical
constraint programming with a shortest path algorithm.

− GA: an ad-hoc genetic algorithm.

Optimal solutions were found using the CPLEX algorithm, ver-
sion 7.5, with no CPU time limit. For the A10 instance, however,
the CPLEX team at ILOG suggested a different set of parameters
for the CPLEX MIP (emphasis on optimality, strong branching) which
resulted in fewer nodes being explored. With this parameterization, the
first integer solution was found in more than three hours. The optimal
solution was found in more than six days. Further work, with interme-
diate (beta) versions of CPLEX, showed that this could be reduced to
a few hours. Yet at this point we do not believe the problem can be
exactly solved in 10 minutes or less.

Table I provides, for each instance, the optimal solution and the
value of the best solution found by each algorithm within the CPU
time limit. The last column provides the mean relative error (MRE) of
each algorithm: for each algorithm, we compute for each instance the
relative distance (c− o)/o between the cost c of the proposed solution
and the optimal cost (or best known solution if the optimal solution
is not known) o, and report the average value of (c − o)/o over the 7
instances.

Table I. Initial results on series A, parameter 011000

A04 A05 A06 A07 A08 A09 A10 MRE

Optimum 22267 30744 37716 47728 56576 70885 82306

MIP 22267 30744 37716 47728 56576 73180 99438 3.4%

CG 22267 30744 37716 47728 57185 72133 87148 1.2%

CP 22267 30744 37716 49812 74127 97386 104316 14.2%

CP-PATH 22267 30744 37716 47728 56576 70885 83446 0.2%

GA 22267 30744 37716 48716 60631 75527 88650 3.4%



8

3. Extensions and Tests with Side Constraints

In the second round, the study was extended to the middle-sized in-
stances (10 to 12 nodes) and, most importantly, to the six side con-
straints. We decided to focus mostly on three algorithms, MIP, CG,
and CP-PATH. Indeed, given the previous results, CG and CP-PATH
appeared as the most promising. The MIP algorithm was a priori less
promising, but different ideas for improving it had emerged during the
first round, and it had also provided us with optimal solutions, although
with much longer CPU time. This section describes the main difficulties
we encountered in extending these algorithms to the six side constraints
of the benchmark.

3.1. Mixed Integer Programming

Various difficulties emerged with the first tests of the MIP algorithm.
First, no solution was found in 10 minutes on A10 with parameters
“010111” and “110111,” i.e., when nomult, bmax, pmax, and tmax
are active, and symdem (which roughly divides the problem size by
2) is not. On the A series, the results also showed a degradation of
performance when bmax and tmax were active.

Numerous attemps were made to improve the situation. First, we
tried to add “cuts,” i.e., redundant constraints that might help the
MIP algorithm:

− For each demand and each node, at most one arc entering (or
leaving) the node can be used.

− For each node, the sum of the capacities of the arcs entering (or
leaving) the node must be greater than or equal to the sum of the
demands arriving at (or starting from) the node plus the sum of
the demands traversing the node.

− For each demand and each arc, the routing of the demand through
the arc excludes, for this arc, the capacity levels strictly inferior
to the demand.

In general, these cuts resulted in an improvement of the lower bounds,
but did not allow the generation of better solutions within the time
limit of 10 minutes. We eventually removed them.

A cumulative MIP formulation (CMIP) of arc capacity levels was
also tested. Rather than using a 0-1 variable yk for each level k, this
formulation uses a 0-1 variable δk to represent the decision to go from
one capacity level to the next, i.e., δk = yk+1− yk. As for the cuts, the
main effect of this change was an improvement of lower bounds.



Solving a Network Design Problem 9

We also tried to program a search strategy inspired by the one used
in the CP-PATH algorithm. This allowed the program to generate
solutions more often in less than 10 minutes, but the solutions were
of poor quality.

Hence, the results are globally not satisfactory. However, the MIP
algorithm sometimes finds better solutions than the CP-PATH algo-
rithm. For example, on C11, the MIP algorithm (with the cumulative
formulation) generates solutions within 10 minutes for only 31 variants
out of 64. But amount these 31 variants, the MIP solution is better that
the solution obtained by the CP-PATH in 18 cases. In such configura-
tion, it might be worthwhile applying both algorithms and keeping the
best overall solution.

3.2. Column Generation

The six side constraints are integrated in very different ways within the
column generation algorithm:

− The symdem constraint halves the number of routes that need to
be built. The presence of this constraint simplifies the problem.

− The bmax constraint is directly integrated in the column gener-
ation subproblem. For each demand Dempq, only paths with at
most Bmaxpq arcs must be considered.

− Similarly, the nomult constraint is used to limit the number of
capacity levels to consider for each arc.

− The pmax and tmax constraints are directly integrated in the
master linear program. They cause no particular difficulty for the
column generation method per se, but make it harder to generate
integer solutions.

− The sec constraint is the hardest to integrate. Constraints link-
ing the choice of a path for a given demand and the choice of a
capacity level for a given arc can be added to the master linear
program when the relevant columns are added. But, before that,
the impact of these constraints on the economic value of a path
cannot be evaluated, which means that many paths which are not
really interesting can be generated. This slows down the overall
column generation process. Also, just as for pmax and tmax, the
addition of the sec constraint makes integer solutions harder to
generate.

The first results were very bad. In most cases, no solution was ob-
tained within the 10 minutes. This was improved by calling the mixed



10

integer version of the master linear program at each iteration, each
time with a CPU time limit evolving quadratically with the number
of performed iterations. This enabled the generation of more solutions,
but sometimes resulted in a degradation of the quality of the generated
solutions (MRE of 2.1% in place of 1.2% for the seven instances used in
the first round). Also, the algorithm remained unable to find a solution
to A10 with parameter “100011” in less than 10 minutes. This is the
parameter for which the sec, pmax, and tmax constraints are active,
while the nomult, symdem, and bmax constraints, which tend to help
column generation, are not active. Over B10, B11, B12, C10, C11 and
C12, 128 such failures occur. The pmax constraint is active in 126 of
these cases. In the others, both sec and tmax are active.

3.3. Constraint Programming with Shortest Paths

3.3.1. A Graph Extension to Constraint Programming
To simplify the implementation, we basically introduced a new type of
variable representing a path from a given node p to a given node q of
a graph. More precisely, a path is represented by two set variables,
representing the set of nodes and the set of arcs of the path, and
constraints between these two variables.

− If an arc belongs to the path, its two extremities belong to the
path.

− One and only one arc leaving p must belong to the path.

− One and only one arc entering q must belong to the path.

− If a node i, i 6= p, i 6= q, belongs to the path, then one and only
one arc entering i and one and only one arc leaving i must belong
to the path.

Several global constraints have been implemented on such path vari-
ables to determine nodes and arcs that must belong to a given path (i.e.,
for connexity reasons), to eliminate nodes and arcs that cannot belong
to a given path, and to relate the path variables to other variables of
the problem, representing the capacities and security levels of each arc.

3.3.2. Solving the Network Design Problem with the Graph Library
At each step of the CP-PATH algorithm, we choose an uninstantiated
path for which the demand Dempq was greatest. We then determine the
path with the smallest marginal cost to route this demand (to this end,
we solve a constrained shortest path problem). A choice point is then
created. In the left branch, we constrain the demand to go through the



Solving a Network Design Problem 11

last uninstantiated arc of this shortest path. In case of backtracking, we
disallow this same arc for this demand. Once a demand is completely
instantiated, we switch to the next one. A new solution is obtained when
all demands are routed. The optimization process then continues in
Discrepancy-Bounded Depth-First Search (DBDFS(Beck and Perron,
2000)) with a new upper bound on the objective.

First experiments exhibited the following difficulties: (1) Perfor-
mances deteriorated when the tmax constraint was active; (2) For 3
sets of parameters on the A10 instance, the algorithm was unable to
find a feasible solution in less than 10 minutes. In fact, it turned out that
the combination of the maximal number of ports constraint (pmax) and
the maximal traffic constraint (tmax) made the problem quite difficult.
(3) Bad results on B10 stemmed from an asymmetric level of traffic.
For example, between the first two nodes of the B10 instance, the traffic
was equal to 186 in one direction and 14 in the other. (4) Performance
was unsatisfactory in the presence of the maximal number of bounds
constraint (bmax).

Several modifications of the program thus became necessary. First,
a “scalar product”-like constraint was implemented. This constraint
directly links the traffic at each node with the paths used for the rout-
ing. This constraint propagates directly from the variable representing
the traffic at each node to the variables representing the demands,
and vice versa, without the intermediate use of the traffic on each
arc. This allowed more constraint propagation to take place and solved
difficulties (1) and (2), even though the combination of the pmax and
tmax constraints remains “difficult.”

The third difficulty (3) was partly resolved by modifying the order
in which the various demands are routed. In the initial algorithm, the
biggest demand was routed first. Given a network with 6 nodes and
the demands Dem01 = 1800, Dem10 = 950, Dem23 = 1000, Dem32 =
1000, Dem45 = 1900 and Dem54 = 50, the previous heuristic behaved
as follows:

− In the case of symmetrical routing, (symdem = true), the demands
are routed in the following order: Dem01 and Dem10, then Dem23

and Dem32, then Dem45 and Dem54.

− In the case of nonsymmetrical routing, (symdem = false), the
order is Dem45, Dem01, Dem23, Dem32, Dem10, Dem54.

In the case of symmetrical routing, it is a pity to wait so long before
routing Dem45, as a large capacity will be needed to route this demand.

Likewise, in the case of nonsymmetrical routing, it could be worth-
while to route Dem10 before Dem23 and Dem32, given that the routing



12

of Dem01 has created a path which is probably more advantageous to
use for Dem10 than for Dem23 and Dem32.

The heuristic was therefore modified:

− In the case of symmetrical routing, each demand and its reverse
demand are grouped and routed together. The weight of these
demands is then the sum of the smallest demand plus twice the
biggest demand. The demands are then ordered by decreasing
weight. This results in the following order: Dem01 and Dem10,
then Dem45 and Dem54, and finally Dem23 and Dem32.

− In the case of nonsymmetrical routing, the weight of each demand
is the sum of twice the considered demand plus the reverse demand.
This results in the following order: Dem01, Dem45, Dem10, Dem23,
Dem32, Dem54.

The average gain on the B10 instance is 3%. On the C instances,
however, this change deteriorated performances by roughly 1%. The
new heuristic was therefore kept, although it was not a complete answer
to the previous problem.

The last difficulty was solved by strengthening constraint propaga-
tion on the length of each path. The following algorithm was used in
order to identify the nodes and the arcs through which a demand from
p to q needs to be routed:

− We use the Ford algorithm (as described in (Gondran and Minoux,
1995)) to identify the shortest admissible path between p and each
node of the graph, and between each node of the graph and q.

− We use the path lengths computed in this way to (i) eliminate
nodes through which no path of length less than Bmaxpq arcs can
pass and (ii) mark nodes such that the demand can be routed
around the node by a path of length less than Bmaxpq arcs.

− We use the Ford algorithm again on each unmarked node to de-
termine if there exists a path from p to q with less than Bmaxpq

arcs not going through the node.

Using this algorithm was finally worthwhile, although its worst case
complexity is O(nmBmaxpq), i.e. O(n4). The best improvement was
of 1.73% on the 64 variations of the B12 problem, meaning an im-
provement of 3.46% on the 32 variations where bmax is active. On
average, this modification also improved the results on the C series.
Nevertheless, on the C12 problem, the results were worse by a factor
of 0.4%.



Solving a Network Design Problem 13

3.4. Experimental Results

Tables II and III summarize the results on series A and on the instances
with 10, 11, and 12 nodes of series B and C. There are four lines per
algorithm. The “Proofs” line indicates the number of parameter values
for which the algorithm found the optimal solution and made the proof
of optimality. The “Best” line indicates the number of parameter values
for which the algorithm found the best solution known today. The
“Sum” line provides the sum of the costs of the solutions found for
the 64 values of the parameter. A “Fail” in this line signifies that for
f values of the parameter, the algorithm was not able to generate any
solution within the 10 minutes. The number of failures f is denoted
within parentheses. Finally, the “MRE” line provides the mean rela-
tive error between the solutions found by the algorithm and the best
solutions known today. Notice that the MRE is given relative to the best
solutions known today, found either by one of the four algorithms in the
table or by other algorithms, in some cases with more CPU time. These
reference solutions may not be optimal, so all the four algorithms might
in fact be farther from the optimal solutions. (Actually, the numbers
that appear in Tables II and III are, for this reason, greater than those
that appeared in previous papers.) Note also that each algorithm is
the result of a few modifications of the algorithm initially applied to
the instances of series A with parameter “011000.” Similar efforts have
been made for each of them. Yet it is obvious that further work on each
of them might lead to further improvements.

The differences with the results of Section 2 are worth noting: a large
degradation of performance with the introduction of side constraints
and the increase in problem size; and important variations with the
numerical characteristics of the problem as shown by the differences
between A10, B10, and C10.

4. Improving the MIP approach with new heuristics

It appears that MIP is not the algorithm of choice for solving this
benchmark of problems:

− the continuous relaxation is of poor quality. This is mainly a con-
sequence of (a) the problem is a mono routing problem while the
relaxation is in fact a simpler flow problem and (b) the cost func-
tion is relaxed to a linear one which may be quite far from the
reality.



14

Table II. Solutions found in 10 minutes, series A, for 64 parameter values

A04 A05 A06 A07 A08 A09 A10 Total

MIP Proofs 64 64 64 27 1 0 0 220

Best 64 64 64 27 13 2 0 234

Sum 1782558 2351778 2708264 3318572 4219647 5640421 Fail (2) Fail (2)

MRE 0.00% 0.00% 0.00% 0.88% 4.21% 13.94% 33.84% 7.43%

CMIP Proofs 64 64 64 7 0 0 0 199

Best 64 64 64 31 3 0 0 226

Sum 1782558 2351778 2708264 3337284 4417611 5934187 Fail (3) Fail (3)

MRE 0.00% 0.00% 0.00% 1.42% 9.07% 19.77% 29.57% 8.41%

CG Proofs 64 64 36 20 0 0 0 184

Best 64 64 64 45 12 1 1 251

Sum 1782558 2351778 2708264 3310007 4263830 5621264 Fail (1) Fail (1)

MRE 0.00% 0.00% 0.00% 0.60% 5.13% 13.17% 22.76% 5.91%

CP-P Proofs 64 64 64 33 7 0 0 232

Best 64 64 64 62 43 18 17 332

Sum 1782558 2351778 2708264 3290940 4076785 5027246 5934297 25171868

MRE 0.00% 0.00% 0.00% 0.01% 0.70% 1.52% 2.20% 0.63%

Table III. Solutions found in 10 minutes, series B and C, for 64
parameter values

B10 B11 B12 C10 C11 C12

MIP Proofs 0 0 0 0 0 0

Best 0 0 0 4 0 0

Sum Fail (16) Fail (20) Fail (39) Fail (10) Fail (24) Fail (63)

MRE 30.56% 33.76% 27.27% 13.32% 57.97% 23.50%

CMIP Proofs 0 0 0 0 0 0

Best 0 0 0 0 0 0

Sum Fail (14) Fail (26) Fail (29) Fail (15) Fail (33) Fail (42)

MRE 20.46% 24.87% 30.19% 11.67% 16.57% 34.70%

CG Proofs 0 0 0 0 0 0

Best 0 0 0 0 0 0

Sum Fail (26) Fail (24) Fail (19) Fail (32) Fail (10) Fail (17)

MRE 34.03% 49.16% 61.15% 30.15% 88.96% 36.28%

CP-P Proofs 0 0 0 10 0 0

Best 0 0 0 20 0 0

Sum 1626006 3080608 2571936 1110966 2008833 2825499

MRE 14.64% 22.54% 18.66% 6.34% 17.47% 23.16%

− when the size of the network increases, solving the continuous
relaxation itself is difficult: beyond 15 nodes, it takes at least a
third of the allowed time.

− only a few integer solutions (if any) are found in 10 minutes and
they are far above the best known solutions in most cases.

There was a lot of room for improvement in this last item so we exper-
imented three new strategies described in detail in (Danna et al., 2003)



Solving a Network Design Problem 15

that proved to be useful for improving the quality of integer solutions
in the case of very difficult MIPs:

− local branching (Fischetti and Lodi, 2002) is a local improvement
heuristic that solves the original MIP with an added cut stating
that, in subsequent solutions, less than k variables can take a value
that differs from their value in the current integer solution. This
temporarily reduces the search space to a sub-space where good
solutions are likely to be found.

− Relaxation Induced Neighborhood Search (RINS)(Danna et al., 2003)
is a heuristic that fixes the variables that have common values
in the current continuous relaxation and in the current integer
solution and solves a sub-MIP on the rest of the variables. Local
branching can only be called each time the MIP finds a new integer
solution. In contrast, RINS can be called at each node of the
original branch-and-bound tree, which is of high importance in
this benchmark where CPLEX rarely finds integer solutions.

− guided dives(Danna et al., 2003) is a tree traversal strategy based
on depth first search that always chooses the branch in which
the decisions in the current integer solution are valid. Specifically,
given a choice between two child nodes, one where the branching
variable is fixed to 0 and the other where it is fixed to 1, this
strategy always chooses the child node where the value of the
branching variable is equal to the value of that variable in the
current integer solution. Thus, this strategy is constantly steer-
ing the search towards the neighborhood of the current integer
solution.

It appears that RINS outperformed the two other strategies two main
reasons. First, it is much stronger at improving bad solutions and
on this benchmark, CPLEX first solutions can be of extremely poor
quality. Second, it is strong at producing quickly good solutions and it
can thus take advantage of the short time limit.

However, RINS still needs a first integer solution to be called, but
CPLEX often fails to find any integer solution within the time limit.
Therefore, we implemented an additional heuristic to find a first integer
solution: fix all variables with integer values in the current relaxation,
solve a sub-MIP on the rest of variables. If this fixing heuristic does not
find an integer solution when called at the root node, it can be called
at subsequent nodes of the general branch and bound tree.

On some models, the fixing heuristic finds integer solutions whereas
CPLEX does not. Since this heuristic is expensive, it happens in turn,



16

although more rarely, that CPLEX finds an integer solution with its
cheaper heuristics or because it has more time to branch whereas the
fixing heuristic fails to build a first integer solution. Therefore, the
MRE is compared only on the instances for which each method yields
at least one integer solution.

Table IV. Solutions found in 10 minutes, series A, for 64 parameter values

Algorithm A04 A05 A06 A07 A08 A09 A10

Fails CPLEX 8.0 0 0 0 0 0 3 14

Fails CPLEX 8.0 + RINS + fix 0 0 0 0 0 0 5

MRE Improvement 0.00% 0.00% -0.03% 1.51% 8.04% 8.13% 13.69%

Table V. Solutions found in 10 minutes, series B and C, for 64
parameter values

Algorithm B10 B11 B12 C10 C11 C12

Fails CPLEX 8.0 45 51 38 27 51 36

Fails CPLEX 8.0 + RINS + fix 35 38 20 28 31 22

MRE Improvement 15.88% 31.95% 32.99% 38.16% 15.19% 29.40%

Tables IV and V show the results obtained with a time limit of 5
minutes on a 1.5 GHz Pentium IV. They show that the fixing heuris-
tic greatly reduces the number of instances where the MIP does not
find any solution (Fails line) and that RINS significantly improves the
quality of the integer solution found. Notice that these results are not
compatible with those of Section 3, because a more recent version of
CPLEX (8.0) was used, with different emphasis settings.

The final results are still far from those obtained with constraint
programming. Indeed, MIP performances were so bad to start with that
the new heuristics only improve on the overall best known solutions in
3 instances. The average MRE obtained on series A is 5.33%. On some
instances of series B and C, CPLEX spends a long time at the root
node and does not allow for RINS to generate good solutions within
the time limit. Different settings of CPLEX parameters could be worth
investigating.

Other possible improvements include a hybridization with constraint
programming: run constraint programming in the first 5 minutes for
example, and use its best solution instead of the poor CPLEX first solu-
tion as the starting point for RINS. It remains to be seen whether RINS
outperforms other algorithms in improving this intermediate solution.



Solving a Network Design Problem 17

There seems to be little hope of solving big problems with a MIP
approach because the continuous relaxation itself is too long to solve.
A priori decomposition approaches might be successful: partition the
network into several sub-networks with a criterion yet to be found,
solve the corresponding sub-MIPs and combine the sub-solutions into
a global solution.

5. Improving Column Generation with Branch and Price
and Cut

As our first column generation model was not satisfactory when some
of the side constraints were activated, we embedded the generation
of valid paths and capacities into a branch-and-bound search. This
kind of procedure where column and cuts can be generated at any
node is referred to as Branch-and-Price-and-Cut (BPC). The same
decomposed model is used but all the capacity columns are added
at the beginning and dynamic generation of columns is only applied
to path columns. The algorithm has been developed in three phases.
First, an initial Branch-and-Price algorithm is implemented using a
pair of branching rules. Then, several cutting planes are introduced
that improve the lower bounds available at each node. Finally, several
heuristic modifications are introduced so that good solutions can be
robustly found in a limited amount of time.

5.1. Branch-and-Price

Two different branching rules have been used. The first one applies to
capacity columns and branches on the capacity level than can be used
for some given arc. The other applies to path columns and is similar
to the typical rules used in path-based column generation models. Our
strategy has been to first look for violated capacity rules and then for
violated path rules.

We used a more complex pricing scheme than in our first column
generation algorithm. A pool of promising columns is created and filled
during the initialization with all paths smaller than some fixed length.
When a new column is needed, the pool is first explored, and then
several heuristically limited generators are invoked in increasing order
of complexity. As soon as new favorable columns are found, they are
added to the current node and to the pool, so that they can be quickly
reused at some other node. This pool allowed an efficient sharing of
good columns between nodes as complex generators are less invoked.
Finally, if all heuristic generators fail, a complete enumerative generator
is used to ensure the completeness of the pricing procedure.



18

In the Branch-and-Price context, only path rules result in a modifi-
cation of the pricing algorithms which consists in removing some arcs
of the underlying graph.

5.2. Branch-and-Price-and-Cut

We used four different classes of cutting planes. The three first classes
only apply to capacity columns and hence do not require the modifica-
tion of the pricing algorithms.

− Set cuts use a lower bound on total capacity of links opened that
cross the frontier of some given set of nodes;

− BigDemand cuts use a lower bound on the number of links opened
with a certain minimal capacity that cross the frontier of some
given set of nodes;

− Connected cuts use a lower bound on the number of links opened
that have at least one extremity in a given set of nodes which
respect some connectivity property on the associated demands;

− Link cuts constrain the link value for some arc to be greater than
the path value for each path going through that arc.

Each cutting plane class is described in more details in (Chabrier,
2003).

The separation algorithm used is very simple. Violation is tested
for every possible cutting planes on all sets of size lower than some
predefined value. This part of our algorithm could be greatly improved.

The pricing algorithms only need to be modified when the last cut
class is used. The dual value of the cutting plane has to be subtracted
from the cost of the corresponding arc when generating paths for the
corresponding demand.

Table VI gives an idea of the gap reduction obtained using cutting
planes at the root node for some A instances with the 011000 configura-
tion. LBC correspond to the lower bound using only the three first kinds
of cuts, and LBCL to the lower bound with all kinds of cuts. However,
good feasible solutions were not always found in the given amount of
time. We hence applied heuristic reduction to the algorithm.

5.3. Heuristic Branch-and-Price-and-Cut

Even with the good lower bounds resulting in an important pruning
of the search tree, the solutions found within the time limit were not



Solving a Network Design Problem 19

Table VI. Gaps Improvements on some A instances using cuts.

Instance LB LBC LBC gap closed LBCL LBCL gap closed

A04 11622.49 21033.00 88.41% 21033.00 88.41%

A07 24021.86 36420.20 52.30% 42042.01 76.01%

A10 42094.65 62202.40 50.01% 71813.23 73.91%

good enough. Several heuristic modifications have hence been applied
to the algorithm.

We first used a MIP solver in a similar manner than with our first
column generation. This operation being costly, we used the MIP solver
only at some selected nodes where the percentage of fractional variables
is lower than some fixed parameter. Only the columns from the invok-
ing node are used. Most of our final solutions are obtained using this
method at a node with a high depth. We think that the modifications
implied by the branching help good columns to be priced.

Even with good lower bounds pruning big parts of the search tree,
Depth First Search can spend much time into a branch corresponding to
the same bad N first decisions. A Limited Discrepancy Search strategy
has been used that allows more different parts of the tree to be explored.

Finally, a pruning criterion is used to discard all nodes where the
gap is smaller that the number of fractional variables multiplied by a
fixed parameter.

6. Improving the CP approach

A lot of effort was spent on the search part of the CP approach. It con-
sisted in using parallelism to improve the amount of computation done,
local search to post-optimize the first solution and Large Neighborhood
Search as the final optimization process.

6.1. Exploiting Parallel Computing

ILOG Parallel Solver is a parallel extension of ILOG Solver (Solver,
2002). It was first described in (Perron, 1999). It implements or -paralle-
lism on shared memory multiprocessor computers. ILOG Parallel Solver
provides services to share a single search tree among workers, ensuring
that no worker starves when there are still parts of the search tree to
explore, and that each worker is synchronized at the end of the search.

First experiments with ILOG Parallel Solver were actually performed
during the first and second rounds. These experiments are descibed in



20

(Perron, 2002) and (Bernhard et al., 2002). Switching from the sequen-
tial version to the parallel version required a minimal code change of a
few lines, and so we were immediately able to experiment with parallel
methods. The parallel version was run on a four processor Pentium
III 700MHz computer, thus exactly 4 times the computer used in our
sequential runs.

6.2. Adding Local Search

An analysis of the first solutions found demonstrated that the algorithm
had a tendency to build networks having a large number of low-capacity
arcs. This turned out to be quite unfortunate as better solutions could
be constructed quite easily from them using a smaller number of arcs,
but with greater capacities. In the case of bigger instances with homo-
geneous demands, such mistakes were common and took quite some
time to be corrected as the absence of big demands does not help the
propagation of the constraints involved in this benchmark. This sug-
gested a postoptimization phase implemented using local search. This
was the most natural way to correct these mistakes as it was lightweight
both in terms of code and performances. Any other tentative correction
of these mistakes through the modification of the heuristic resulted in
deteriorated overall quality as specializing the heuristic for one partic-
ular instance of the problem had the tendency to make it less robust
on the average.

The addition of local search is implemented using a three-part search.
The first part consists of a search for a feasible solution where the search
would be penalized if it took the decision to open a new arc (by doubling
the cost of the arc).

The second phase consists of a postoptimization of this first solution
based on local search. This local search phase is implemented on top
of the ILOG Solver Local Search framework (Shaw et al., 2000; Shaw
et al., 2002). In our case we created a neighborhood which had as
neighbors the removal of each arc from the graph. Such a destructive
move requires some rerouting to maintain feasibility of the solution.
As local and tree-based search mechanisms can be combined in Solver,
at each such move we used traditional tree-based search to reroute
paths in order to attempt to maintain feasibility. The neighborhood
and tree searches are naturally combined in the same search goal. The
local search process we employed was entirely greedy. At each stage,
we removed the arc from the graph which decreased the cost by the
greatest amount (after rerouting), stopping when there was no arc we
could remove without being able to legally reroute the traffic. This
whole mechanism was coded in less than fifty lines of code.



Solving a Network Design Problem 21

The last phase is the original optimization tree-based search, but
with an improved upper bound.

6.3. Breaking Barriers with Randomization and Large
Neighborhood Search

6.3.1. Using Randomization and Large Neighborhood Search
The previous three phase schema evolved dramatically as we replaced
the third phase (complete tree search) by a large neighborhood search
(LNS) schema (Shaw, 1998). Starting from an instantiated solution
stating routes for each demand, we chose to freeze a large portion of
this solution and to re-optimize the unfrozen part.

The unfrozen part was first choosen in a random way: Given a num-
ber n of demands and size, the total number of demands, we compute
the ratio ρ = n/size. Then we iterate on all demands and freeze them
with a probability (1 − ρ). In the following, we use n = 30 as it gives
good results. Then we loop over the optimization part, each time with
a new neighborhood.

This technique was subsumed by a structured LNS implementation.
This means that the fragments to reoptimize are not chosen randomly
but according to a given structure. We adopted and implemented the
following schema. We randomly pick two used arcs of the current solu-
tion and set the subproblem to re-optimize to be all demands that
use any of these two arcs. This simple method is very effective as
it re-optimizes each arc and thus concentrates directly on individual
components of the total cost.

As described in Section 3.3, the instantiation order between demands
is fixed using heuristic weights associated with each demand. We tried
to give a random order over demands, hoping that this would correct
mistakes in the fixed instantiation order. We believe that the fixed
instantiation order, while quite efficient, makes some big mistakes in
first routing big unconstrained demands. This means that small critical
demands are routed afterwards on a network already full of traffic.

Following the guidelines in (Gomes and Selman, 1997), we experi-
mented with various fast restart policies. This work was described in
(Perron, 2003). The resulting fast restart policy limits the search in each
iteration loop to be a DBDFS(Beck and Perron, 2000) search truncated
both by a maximum number of discrepancies set to one and by a fail
limit of 20.

6.3.2. Using a Portfolio of Algorithms
While working on the routing of each demand, it appeared that each
modification we made that dramatically improved the solution of one



22

or two problem instances would deteriorate in a significant way the
solution of one or two other instances. This was the perfect case for
applying portfolios of algorithms (Gomes and Selman, 1997).

Our first implementation of the portfolio of algorithms technique
used a round-robin schema. Each large neighborhood search loop uses
one algorithm, that is selected in a round-robin way. To implement
different algorithms, we examined the routing of each demand. As
described in Section 3.3, we compute for each demand a shortest path
from the source to the sink of the unrouted part of the demand. The last
arc of this shortest path is then chosen and a choice point is created. The
left branch of the choice point states that the route must use this arc
and the right branch states that this arc is forbidden for this route. This
selection is applied until the demand is completely routed. We create
a portfolio of algorithms by computing different kinds of penalties on
the cost of each arc and by choosing different combinations of standard
cost and penalties.

While attractive, this implementation of a portfolio of algorithms
tends to waste a lot of resources. Imagine that we have n algorithms
and that only one algorithm can improve our routing problem, then we
spend (n−1)/n of our time in a speculative and unproductive way. We
then decided to implement a specialization mechanism. Given n algo-
rithms Ai, we use an array of integer weights wi. Initially, each weight
is set to 3. We then choose one algorithm against its weight probability
(wi)/(

∑
j wj). In the event of the success of a LNS loop, the weight

of the successful algorithm is increased by 1 (with an upper bound
arbitrarily set to 12). In case of repeated failure of an algorithm (in our
implementation, 20 consecutive failures), the weight wi is decreased by
1 (with another arbitrarily chosen lower bound of 2). The result is a
specializing schema which concentrates on the successful algorithms for
a given problem.

6.3.3. Parallelizing the LNS phase
Given the success of the previous sequential methods, we decided to
test them on our quad processor 700MHz Pentium III.

The first parallelization of our LNS + random search was very sim-
ple. Simply Using the standard API of ILOG Parallel Solver and with
minor changes to the sequential code (less than five lines of code),
we were able to implement parallel LNS + random + portfolio of
algorithms. Unfortunately, this gave poor results. Deeper investigation
showed that parallelization was inefficient as, on average, only 2 out of 4
processors were used at a time. This is a consequence of the degenerated
nature of the search tree explored while re-optimizing a fragment.



Solving a Network Design Problem 23

We then decided to investigate another kind of parallelization. We
implemented the original portfolio of algorithms (with no specializa-
tion schema) where each method was run in parallel. Furthermore,
in order to hide latency and idle workers, we decided to use more
algorithms than processors (6 algorithms on a 4-processor box). The
results were improved a little with this approach. Examination of the
computer workload revealed that approximately 60% of the total com-
puting power is used at any given time. This is a little better than the
previous naive implementation, but this implementation has a serious
flaw: it is not scalable. In fact, it will not be efficient if, for example,
there are more processors than different algorithms in use.

Therefore, we decided to implement another schema, which com-
bined ideas from the two previous implementations. We implemented
multipoint LNS with specialization. This means that at each LNS loop,
the algorithm is chosen using the specialization schema. The instantia-
tion order of the demands is chosen randomly, but in the same way for
each worker. However, each worker works on a different fragment of the
whole problem to re-optimize, using different randomly chosen parts.
Furthermore, in order to hide latency, we use a few more workers than
processors (7 workers and 4 processors). This last implementation gave
the best results and was kept for the experiments. It combines excellent
results, scalability, and robustness. The load was constant between 90%
and 100% during the whole search process.

7. Conclusion

Tables VII, VIII, and IX summarize the overall results for different
algorithms (CPLS = CP-PATH + LS, CPRLNS = CP-PATH + Ran-
dom LNS, CPSLNS = CP-PATH + Structured LNS, CPSLNS4 =
CP-PATH + Structured LNS + parallel with 4 processors, BPC =
Branch and Price and Cut). The current implementation of the BPC
algorithm assumes that there is at most one demand between two given
nodes, so BPC results on C20 are not available. BPC appears as the
best algorithm on the least-constrained series B, while CP-PATH with
structured LNS appears as the best algorithm on series A and C. Notice
that many of the best-known solutions are not found directly by any
algorithm, but inferred from solutions found by these algorithms on
more constrained versions of the same problem. These results do not
suggest that we have found the ultimate algorithm for this benchmark.
On the contrary, we believe that all the algorithms we tried can still
be improved, and that there are many other algorithms to design and
test on this benchmark.



24

The following results are run on a 700MHz pentium III in ten min-
utes for the sequential CP variation, on a quad processor 700MHz in ten
minutes for the parallel version and on a 1.13GHz pentium III in five
minutes for the BPC version. Note that for this last version, doubling
the time to ten minutes and still using a 1.13GHz pentium III leads to
a 2% improvement on the obtained results.

Table VII. Solutions found in 10 minutes, series A, for 64 parameter values

Algorithm A04 A05 A06 A07 A08 A09 A10 Total

CPLS Best 64 64 64 62 43 18 15 330

Sum 1782558 2351778 2708264 3290940 4076785 5027246 5934297 25171868

MRE 0.00% 0.00% 0.00% 0.01% 0.70% 1.53% 2.24% 0.64%

CPRLNS Best 64 64 64 43 21 0 0 256

Sum 1782558 2351778 2708264 3305817 4095341 5173110 6150161 25567029

MRE 0.00% 0.00% 0.00% 0.48% 1.17% 4.45% 5.97% 1.72%

CPSLNS Best 64 59 60 61 36 23 9 312

Sum 1782558 2357988 2711536 3292312 4072458 5000657 5923959 25141468

MRE 0.00% 0.23% 0.12% 0.05% 0.59% 0.97% 2.05% 0.57%

CPSLNS4 Best 64 60 61 64 51 35 18 353

Sum 1782558 2354226 2709350 3290590 4063772 4978969 5853995 25033460

MRE 0.00% 0.10% 0.03% 0.00% 0.37% 0.52% 0.84% 0.27%

Table VIII. Solutions found in 10 minutes, series B, for 64 parameter values

Algorithm B10 B11 B12 B15 B16 B20 B25 Total

CPLS Best 0 0 0 0 0 0 0 0

Sum 1610770 3023086 2555469 2616749 2521154 4809675 6878867 24015770

MRE 13.54% 20.09% 17.71% 22.96% 17.27% 27.42% 21.42% 20.06%

CPRLNS Best 0 0 0 1 0 0 0 1

Sum 1559876 2867269 2495065 2545590 2482189 4633576 6792567 23376132

MRE 10.00% 13.88% 14.87% 19.32% 15.33% 22.63% 19.84% 16.56%

CPSLNS Best 9 2 0 2 0 0 2 15

Sum 1462431 2672609 2287097 2359371 2299906 4439418 6760833 22281665

MRE 3.15% 6.11% 5.52% 10.47% 6.71% 17.61% 19.28% 9.83%

CPSLNS4 Best 19 5 8 3 10 1 5 51

Sum 1443323 2617710 2254242 2313863 2269249 4361197 6573861 21833445

MRE 1.83% 4.04% 3.96% 8.45% 5.24% 15.55% 15.99% 7.86%

BPC Best 0 1 2 14 4 15 6 42

Sum 1488661 2685764 2307613 2241966 2309586 4038697 6386837 21459124

MRE 5.11% 6.74% 6.28% 5.61% 7.22% 5.77% 12.26% 7.00%

One of our aims in this paper was to show the type of performance
discrepancies that can occur when industrial optimization applications
are developed and to describe some types of corrections that can be ap-
plied: (1) put more or less emphasis on the generation of admissible so-
lutions; (2) strengthen problem formulation; (3) strengthen constraint



Solving a Network Design Problem 25

Table IX. Solutions found in 10 minutes, series C, for 64 parameter values

Algorithm C10 C11 C12 C15 C16 C20 C25 Total

CPLS Best 20 0 0 0 0 0 0 20

Sum 1110966 2003101 2801849 4207669 2013729 7218196 7444034 26799544

MRE 6.34% 17.14% 22.12% 24.15% 16.86% 31.67% 21.20% 19.93%

CPRLNS Best 18 1 0 0 0 0 0 19

Sum 1074942 1856626 2603355 3860496 1858298 6990726 7340627 25585070

MRE 2.85% 8.65% 13.44% 14.84% 7.84% 27.66% 19.55% 13.55%

CPSLNS Best 31 6 0 9 4 4 2 56

Sum 1059816 1793732 2406664 3539685 1758174 5846432 6933942 23338445

MRE 1.35% 5.19% 4.89% 5.04% 2.02% 6.77% 12.10% 5.34%

CPSLNS4 Best 37 5 4 14 8 11 10 89

Sum 1054491 1775844 2369699 3473590 1755041 5754809 6711360 22894834

MRE 0.84% 4.19% 3.28% 3.19% 1.85% 4.99% 8.78% 3.87%

BPC Best 1 1 1 0 5 NA 12 NA

Sum 1095281 1922720 2443932 3635519 1769432 NA 7002042 NA

MRE 4.88% 12.36% 6.51% 8.43% 2.70% NA 14.69% NA

propagation; (4) adapt variable selection heuristics to symmetries or
asymmetries in the problem; (5) use or -parallelism; (6) adapt the tree
search traversal strategy to the characteristics of the problem; (7) use
local search to improve the first solution(s) found by a tree search
algorithm. The ability to implement and test such corrections with
minimal development effort is crucial.

To design robust algorithms, one needs a wide benchmark suite sim-
ilar to the one we used during this project. For example, the constraint
programming method quickly appeared as globally more efficient than
the other approaches, but its counterperformance on larger instances
or on series B compared to series A triggered work on both standard
local search and large neighborhood search, which eventually became
important components of the overall algorithm. It was (and still is) also
interesting to compare the results of different algorithms in the presence
or in the absence of the various optional constraints. For example, Table
X provides for each value of the sec, nomult, symdem, bmax, pmax, and
tmax parameters, the mean relative error obtained by “CPSLNS” and
“BPC” when the corresponding optional constraint is on or off (mean
over 7*32 instances on series B, and 6*32 instances on series C, C20
being omitted). When looking at this table, we shall recall that the
relative errors are computed against the best-known solutions, so a
small figure indicates that the algorithm under consideration performs
well in comparison to the other algorithms that have been tested.
Several things immediately appear. First, the constraint programming
algorithm deals well with the constraints of symmetry, maximal number



26

of bounds, and maximal number of ports. In the particular case of
the maximal number of bounds, branch-and-price even appears not
to perform that well when the constraint is active, which means in
fact that branch-and-price benefits less than constraint programming
from the presence of the constraint. On the other hand, the constraint
programming algorithm comparatively does not perform well with the
security and maximal node traffic constraints, which suggests that it
could be worth improving the propagation of these constraints.

Table X. Mean relative errors when op-
tional constraints are or are not active

Series B B C C

Algorithm CPSLNS BPC CPSLNS BPC

sec = 0 8.98% 7.68% 3.50% 9.08%

sec = 1 10.39% 6.85% 6.36% 7.77%

nomult = 0 9.38% 8.89% 4.71% 9.81%

nomult = 1 9.99% 5.63% 5.15% 7.04%

symdem = 0 10.00% 8.48% 4.95% 8.91%

symdem = 1 9.37% 6.04% 4.90% 7.95%

bmax = 0 11.98% 5.99% 5.89% 6.54%

bmax = 1 7.39% 8.54% 3.97% 10.31%

pmax = 0 10.09% 7.68% 5.59% 8.91%

pmax = 1 9.28% 6.84% 4.27% 7.95%

tmax = 0 9.23% 7.73% 4.47% 8.40%

tmax = 1 10.13% 6.80% 5.39% 8.45%

The benchmark suite we used is public. Instances are available at
http://www.prism.uvsq.fr/Rococo. We believe other benchmark suites
of a similar kind are needed for the academic community to attack the
issue of algorithm robustness as it is encountered in industrial settings,
where data are neither random nor uniform and where the presence of
side constraints can require significant adaptations of the basic models
and problem-solving techniques found in the literature.

Acknowledgements

This work has been partially financed by the French MENRT, as part
of RNRT project ROCOCO. We wish to thank our partners in this
project, particularly Jacques Chambon and Raphaël Bernhard from
France Telecom R&D, Dominique Barth, Bertrand Le Cun and Thierry
Mautor from the PRiSM laboratory, and Claude Lemaréchal from IN-
RIA Rhône-Alpes. The very first CP program was developed by Olivier



Solving a Network Design Problem 27

Schmeltzer, the initial CP-PATH program by Jean-Charles Régin, and
the very first MIP program by Philippe Refalo. Ed Rothberg and Paul
Shaw also contributed to the design of the MIP heuristics and of the
various local search methods. We thank Jean-Charles, Paul, Philippe,
Ed, and the CPLEX team for many enlightening discussions over the
course of the ROCOCO project.

List of Abbreviations

The following abbreviations are used in this article:

BPC Branch and Price and Cut

CG Column Generation

CMIP Cumulative MIP formulation of the problem

CP Constraint Programming

CPLS Constraint Programming + local search post optimization of
the first solution

CPRLNS CPLS + Large Neighborhood Search with pure random
neighborhoods

CPSLNS CPLS + Large Neighborhood Search with structured neigh-
borhoods

CP-PATH A Dedicated graph library built on top of ILOG Solver

DBDFS Discrepancy Bounded Depth First Search

GA Genetic Algorithm

LNS Large Neighborhood Search

LS Local Search

MIP Mixed Integer Programming

RINS Relaxation Induced Neighborhood Search

References

Beck, J. C. and L. Perron: 2000, ‘Discrepancy-Bounded Depth First Search’. In:
Proceedings of CP-AI-OR 00.



28

Bernhard, R., J. Chambon, C. Lepape, L. Perron, and J. C. Régin: 2002, ‘Résolution
d’un problème de conception de réseau avec Parallel Solver’. In: Proceeding of
JFPLC. (In French).

Bienstock, D. and O. Günlük: 1996, ‘Capacitated Network Design: Polyhedral
Structure and Computation’. ORSA Journal of Computing 1996, 243–260.

Chabrier, A.: 2003, ‘Heuristic Branch-and-Price-and-Cut to solve a Network Design
Problem’. In: CPAIOR’03.

Cplex: 2001, ‘ILOG CPLEX 7.5 User’s Manual and Reference Manual’. ILOG, S.A.
Danna, E., E. Rothberg, and C. Le Pape: 2003, ‘Exploring Relaxation Induced

Neighborhoods to Improve MIP Solution’. Technical report, ILOG.
Fischetti, M. and A. Lodi: 2002, ‘Local Branching’. In: Proceedings of the Integer

Programming Conference in honor of Egon Balas.
Gabrel, V., A. Knippel, and M. Minoux: 1999, ‘Exact Solution of Multicommodity

Network Optimization Problems with General Step Cost Functions’. Operations
Research Letters 25, 15–23.

Gomes, C. P. and B. Selman: 1997, ‘Algorithm Portfolio Design: Theory vs. Prac-
tice’. In: Proceedings of the Thirteenth Conference On Uncertainty in Artificial
Intelligence (UAI-97). New Providence, Morgan Kaufmann.

Gondran, M. and M. Minoux: 1995, Graphes et algorithmes. Eyrolles.
Perron, L.: 1999, ‘Search procedures and parallelism in constraint programming’.

In: J. Jaffar (ed.): Proceedings of CP’99. pp. 346–360, Springer-Verlag.
Perron, L.: 2002, ‘Practical Parallelism in Constraint Programming’. In: Proceedings

of CP-AI-OR 2002. pp. 261–276.
Perron, L.: 2003, ‘Fast Restart Policies and Large Neighborhood Search’. In:

Proceedings of CPAIOR 2003.
Rothlauf, F., D. E. Goldberg, and A. Heinzl: 2002, ‘Network Random Keys: A Tree

Representation Scheme for Genetic and Evolutionary Algorithms’. Evolutionary
Computation 10(1), 75–97.

Shaw, P.: 1998, ‘Using Constraint Programming and Local Search Methods to Solve
Vehicle Routing Problems’. In: M. Maher and J.-F. Puget (eds.): Proceeding of
CP’98. pp. 417–431, Springer-Verlag.

Shaw, P., V. Furnon, and B. de Backer: 2000, ‘A Lightweight Addition to CP
Frameworks for Improved Local Search’. In: U. Junker, S. E. Karisch, and T.
Fahle (eds.): Proceedings of CP-AI-OR 2000.

Shaw, P., V. Furnon, and B. De Backer: 2002, ‘A Constraint Programming Toolkit
for Local Search’. In: S. Voss and D. L. Woodruff (eds.): Optimization Software
Class Libraries. Kluwer Academic Publishers, pp. 219–262.

Solver: 2002, ‘ILOG Solver 5.3 User’s Manual and Reference Manual’. ILOG, S.A.


