
Vehicle Routing Problem

with Elementary Shortest Path based

Column Generation

Alain Chabrier
ILOG

Gobelas, 21,
28023 Madrid

achabrier@ilog.fr

April 10, 2003

Abstract

The usual column generation model for a Vehicle Routing Problem involves an
elementary shortest-path subproblem. The worst-case complexity of the known al-
gorithms for this problem being too high, the elementary-path constraint is usually
relaxed. Indeed, as each customer must be visited exactly once, the two problems
with and without the elementary-path constraint have the same optimal integer
solutions. In this article, we propose one theoretical and several practical improve-
ments to the algorithm for elementary paths. We obtain better lower bounds and
pruning of the search tree, and these improvements allowed us to find an exact
solution to 17 instances of the Solomon benchmark suite which were previously
open.

1 Introduction

Many academic publications have been dedicated already to Vehicle Routing Prob-
lems (VRPs). The problems from this family mimic the real-life logistic problem of
minimizing the cost of distributing goods from a warehouse to a set of destinations
by means of several vehicles. VRP data are a set of nodes to be visited, a set of
vehicles initially located at some special node (called the depot), and that must
get back to it at the end of the route, and a distance scheme, associating to each
pair of nodes the distance to travel from one to the other. The objective is to find
a set of routes (i.e., ordered sequences of visits) for the vehicles, covering all the
visits and doing so with the minimal total length travelled. The simplest exten-
sion uses a fixed capacity to limit the quantity of goods deliverable by a specific
vehicle. Other extensions include a minimum and maximum time for each node
constraining the moment at which it can be visited. Several other extensions are
commented in the literature: minimization of the number of vehicles before total
distance, use of several depots. In this paper, we worked on the Vehicle Routing
Problem with Time Windows (VRPTW).

1

Among the studies of VRPs, two categories can be identified. On the one
hand, heuristic methods are used to find solutions of acceptable quality quickly,
and are usually based on local search techniques ([RT95, CLM01, HG99, GTA99])
sometimes in hybrid cooperation with constraint programming ([DFS+00, RGP99,
Sha98, KPS00, BH01]). On the other hand, exact methods focus on finding an
optimal solution. Column Generation techniques are part of those exact methods
([DDS92, CR99, Lar99, KLM01]). The original linear program is decomposed by
means of the Dantzig-Wolfe decomposition into a linear restricted master prob-
lem and a pricing subproblem. The master problem then becomes a partition-
ing problem with binary variables, and the pricing subproblem is a constrained
shortest-path problem in charge of generating new promising columns. In the orig-
inal VRP, each customer has to be visited once. Hence, the routes should not
include cycles, so that the subproblem of the decomposed version that should be
solved is the Elementary Shortest-Path Problem with Resource Constraints and
Time Windows (ESPRCTW). This cycle constraint is usually relaxed and instead,
a Shortest Path with Resource Constraints and Time Windows (SPRCTW) is used.
In that context, it can be shown that the optimal integer solution of this column
generation model with the cycle constraint relaxed will contain only elementary
routes. The main reason for relaxing this cycle constraint is that more powerful
algorithms are available to solve the SPRCTW than to solve the ESPRCTW. In
fact, pseudo-polynomial algorithms are available for the SPRCTW, whereas in con-
trast, it has been shown that ESPRCTW is NP-hard [Dro94]. To our knowledge,
an ESPRCTW algorithm for VRP is proposed only in [FDGG02]. In [RGP02], the
elementary sub-problem is solved using constraint programming.

In this article, we present several advantages of ESPRCTW, such as the better
quality of the lower bounds obtained with the relaxed restricted master problem,
and we present several techniques to reduce the impact in efficiency of taking the
cycle constraint into account. We give some promising results obtained on a well
known benchmark suite.

The article is organized as follows. In the next section, we formally introduce
the Vehicle Routing Problem as well as its linear programming model, and we
show the model resulting from the Dantzig-Wolfe decomposition. In Section 3, we
present our method, introducing the column generation scheme and the elementary
shortest-path subproblem. Then, in Section 4, we discuss the possible differences in
quality between our bounds and those obtained by other methods. In Section 5, we
present our ESPRCTW implementation along with several practical enhancements.
Finally, we present computational results in Section 6.

2 The VRP decomposed model

In this section, we introduce two different models for the VRP. In the Vehicle Rout-
ing Problem with Time Windows, K vehicles with respective maximum capacities
Ck are initially available at a specific position referred as the depot. N visits must
be performed. At each visit i, a quantity qi of material must be delivered. The
whole quantity must be delivered at the same time that must be in a time window
interval defined by [ai, bi]. A is a set of arcs between those N +1 sites, and a func-
tion d, identical for all the vehicles, defines the distance corresponding to each arc
(i, j) ∈ A. The distance d is also used to measure time. The routes must start and
end at two dummy visits, 0 and N +1, representing the depot. The objective is to

2

find the minimal distance set of routes for the K vehicles to deliver the quantities
to all the visits.

2.1 MIP model

The compact mixed integer model involves binary variables xijk indicating whether
vehicle k uses the arc from i to j, and variables sik indicating the time at which
vehicle k reach visit i. Constraints ensure the routes correspond to a valid path
(i.e. total vehicle capacity respected and each visit covered exactly once).

The MIP model is thus:

min

K∑

k=1

∑

(i,j)∈A

d(i, j)xijk (1)

∑

j∈δ+(0)

x0jk = 1, ∀k ∈ {1, ...,K} (2)

∑

i∈δ−(j)

xijk −
∑

i∈δ+(j)

xjik = 0, ∀k ∈ {1, ...,K},∀j ∈ {1, ..., N} (3)

∑

i∈δ−(N+1)

xi,N+1,k = 1, ∀k ∈ {1, ...,K} (4)

∑

i∈S

∑

j∈S,j 6=i

xijk ≤ |S| − 1 ∀k ∈ {1, ...,K},∀S ⊂ X, 1 < |S| < N (5)

K∑

k=1

∑

j∈δ+(i)

xijk = 1, ∀i ∈ {1, ..., N} (6)

N∑

i=1

qi

∑

j∈δ+(i)

xijk ≤ Ck, ∀k ∈ {1, ...,K} (7)

sik + d(i, j)−K(1− xijk) ≤ sjk, ∀(i, j) ∈ A, ∀k ∈ {1, ..., K} (8)
ai ≤ sik ≤ bi, ∀i ∈ {1, ..., N},∀k ∈ {1, ..., K} (9)
xijk ∈ {0, 1}, ∀k ∈ {1, ...,K},∀(i, j) ∈ A (10)

Constraints (2-4) define the flow for vehicle k, constraints (5) eliminate the
possible subtours, constraints (6) ensure each visit is made by at most one vehicle,
and constraints (7) ensure that capacities of vehicles are respected. Constraints
(8) and (9), defines time windows. Finally, the objective (1) minimizes the sum of
the distance of the arcs in use.

Note that the number of constraints on subtours is exponential so that they
are added dynamically during the search, using a Branch-and-Cut approach.

2.2 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition ([DW60]) is then applied to this MIP model. We
consider the matrix Bk corresponding to the constraints (2-5) and (7) for a given
k. The constraint (6) is kept apart. The polytope defined by Bk admits as extreme
points the set Ωk of the valid paths for the vehicle k. We can thus write one of its
points as a linear combination of those paths. To do so, we use coefficients xp

ijk,

3

the value of which is 1 if arc (i, j) belongs to the path corresponding to the extreme
point λp

k, and 0 otherwise. For each k ∈ {1, ..., K}, a solution xijk can thus be
rewritten as follows:

xijk =
∑

p∈Ωk

xp
ijkλp

k, ∀(i, j) ∈ A,

∑

p∈Ωk

λp
k = 1, ∀k ∈ {1, ...,K}

λp
k ≥ 0, ∀p ∈ Ωk

We can then define cp
k as the cost of route p for vehicle k. Also, positive integers

ap
ik indicate the number of times visit i is made by vehicle k for the route p.

cp
k =

∑

(i,j)∈A

c(i, j)xp
ijk, ∀k ∈ {1, ...,K}, ∀p ∈ Ωk

ap
ik =

∑

j∈δ+(i)

xp
ijk, ∀i ∈ {1, ..., }N, ∀k ∈ {1, ..., }K, ∀p ∈ Ωk

If we substitute these expressions into the original model, we obtain the decom-
posed model:

min

K∑

k=1

∑

p∈Ωk

cp
kλp

k

K∑

k=1

∑

p∈Ωk

ap
ikλp

k = 1, ∀i ∈ {1, ..., N}
∑

p∈Ωk

λp
k = 1, ∀k ∈ {1, ...,K}

λp
k ≥ 0, ∀k ∈ {1, ...,K}, ∀p ∈ Ωk

The capacity, subtour-elimination and time window constraints are integrally
moved to the subproblems defining the validity of the extreme-point paths. That
change can be formulated as follows:

4

min
∑

(i,j)∈A

d(i, j)xij

∑

j∈δ+(0)

x0j = 1,

∑

i∈δ−(j)

xij −
∑

i∈δ+(j)

xji = 0, ∀j ∈ {1, ..., N}
∑

i∈δ−(N+1)

xi,N+1 = 1,

∑

i∈S

∑

j∈S,j 6=i

xij ≤ |S| − 1 ∀S ⊂ X, 1 < |S| < N

N∑

i=1

qi

∑

j∈δ+(i)

xij ≤ Ck,

si + d(i, j)−K(1− xij) ≤ sj , ∀(i, j) ∈ A

ai ≤ si ≤ bi, ∀i ∈ {1, ..., N},
xij ∈ {0, 1}, ∀(i, j) ∈ A

We recognize here the problem that consists of finding elementary paths from
depot to depot and respecting the capacity constraint.

2.3 Identical vehicles

When vehicles are identical (i.e., they have the same total capacity), some parts of
the model can be compacted:

λp =
K∑

k=1

λp
k, ∀p ∈ Ω =

K⋃

k=1

Ωk

and we obtain:

min
∑

p∈Ω

cpλp

∑

p∈Ω

ap
i λ

p = 1, ∀i = 1, ..., N (11)

∑

p∈Ω

λp = K, (12)

λp ≥ 0, ∀p ∈ Ω

This decomposed model contains a huge number of possible path variables. If
N is the number of visits, the number of theoretical path variables can grow up to
N !. This corresponds to 3 628 800 paths for a simple case of 10 nodes. Hence, we
use column-generation techniques, where variables are added dynamically.

5

3 Column generation

In this section, we discuss the various column-generation procedures possible for
the decomposed model. In particular, we emphasize the essential fact that different
kinds of subproblems are possible.

The column-generation procedure we used is quite standard. A Branch-and-
Price (see [BJN+98]) search is executed with the common branching scheme. Inte-
grality constraints on the λ variables are relaxed, and the model solved is restricted
to only a limited subset of the variables. Then, as is practical with the revised sim-
plex method, we look for new possible variables entering the restricted model by
checking their reduced cost. This operation is known as pricing new variables. It
uses a subproblem in charge of finding new valid columns with favorable reduced
cost. When no more new columns can be priced out, the relaxed solution is optimal
for the relaxed problem. If this solution does not contain fractional variables, it
is also an optimal solution for the integer problem. Otherwise, branching is done.
In each branch, further pricing is needed as the branching rules modify the prob-
lem. This Branch-and-Price approach applied to Vehicle Routing Problems is well
documented ([Lar99, Koh95, DDS99, CDD+99]).

For several practical reasons, set-partitioning constraints (11) are usually changed
to set-covering constraints only. Any solution to the original problem is also so-
lution to this new relaxed problem. Moreover, it is easy to see that an optimal
integer solution from the new problem would only contain one route per visit, and
hence would be also the optimal solution of the original problem.

3.1 The pricing scheme

If πi and π0 are the dual values corresponding to equations (11) and (12), the
reduced-cost is :

rc(p) = c(p)−
N∑

i=1

ap
i πi − π0 =

∑

(i,j)∈p

(d(i, j)− πj)− π0

The subproblem thus consists of finding the shortest elementary path with respect
to the following cost and respecting the capacity constraint:

rc(i, j) = d(i, j)− πj , ∀j ∈ {1, ..., N}
rc(i,N + 1) = −π0

3.2 Various possible subproblems

A valid route is an elementary path from depot to depot respecting constraints on
some resources (length, capacity, and time). Let p be a path p = (i0 = d, i1, ..., im =
i, ..., d). The resources can be generalized to L resources indexed by l. Dl

i represents
the accumulated quantity of ressource l at node i. Distance functions dl(i, j) define
the accumulation of resource l between i and j. Intervals of accepted values [al

i, b
l
i]

are defined for each pair of resource and visit. We will use the fact that the increase
of an accumulated resource between two successive nodes i and j must satisfy the
triangle inequality :

dl(i, k) ≤ dl(i, j) + dl(j, k), ∀ l = 1...L

6

The cost of a path is equal to the accumulation of a resource. The reduced cost
is obtained from the cost and dual values πj of each corresponding set-covering
constraint as given in the previous section. As only negative reduced-cost routes
can enter the restricted master problem, it should be minimized or constrained to
be negative.

According to the model, routes should not contain cycles. However most of
the algorithms proposed in the literature relax this constraint in order to simplify
the subproblem. Indeed, even if the solution of the relaxed restricted master prob-
lem may then contain non elementary routes with non-null fractional values, the
optimal integer solution will not contain such routes.

Theorem 1 When the accumulations of resources respect the triangle inequality,
an optimal integer solution to the master problem with non-elementary paths con-
tains only elementary paths.

Proof: If an optimal solution of the integer master problem did contain a non-
elementary route, i.e., a vehicle going twice through the same visit, it would be
easy to derive a better column from it. Moreover, thanks to the triangle inequality,
the route obtained by removing this visit once would always be valid and have an
equal or lower cost. A better global solution would hence be feasible; this situation
contradicts the hypothesis that the solution containing the non-elementary route
was optimal.

In general, the shortest-path subproblems are thus solved by means of a pseudo-
polynomial labeling algorithm where cycles are allowed. Note, however, that if
only elementary paths are used, the relaxed master problem is more constrained
and might offer better quality bounds. We illustrate this result in an example in
Section 4.3.

3.3 Labeling algorithm

This kind of algorithm to solve subproblems arising in Vehicle Routing Problems
was first introduced in [DD86] and [Des88]. Labeling algorithms associate labels
with partial paths and create new ones extending the paths. When no more labels
can be generated, the optimal path is given by the label at the end node with
the best reduced cost. At some node i, a partial path p is associated with a
label Ep = (rcp, D

0
p, ..., DL

p). Certain rules are used to fathom partial paths that
are known not to be part of the searched optimal path. The basic rule is the
dominance rule. We say a partial path p1 ending at node i dominates some other
partial path p2 ending at the same node i, if the following conditions are respected:

rc1 ≤ rc2 (13)
Dl

1 ≤ Dl
2,∀l ∈ {0, ...L} (14)

Indeed, these conditions ensure that if p2 could be prolonged to a good path p∗2,
then it would be possible to prolong p1 in the same manner to obtain a path p∗1.
It can be shown that the resulting path p∗1 would be valid and would have a better
reduced cost than p∗2. The partial path p2 can thus be safely fathomed, and no
attempt to prolong it will be made.

In [Des88], a full labeling algorithm for the shortest path problem with re-
source constraint and time windows is presented. Several implementations are also
discussed there.

7

This dominance rule cannot be used directly to search for the elementary short-
est path. This last problem is much more complicated. The central result of this
article is to propose a practical, efficient modification of this algorithm for elemen-
tary shortest paths.

3.4 Branching scheme

We use the commonly employed branching scheme based on adapted Ryan-Foster
rules (e.g. see [DDS92]). We look for two fractional routes sharing the same pair
of visits i and j but with one route using the arc (i, j) and not the other. It can
be shown that such routes can always be found. In each branch, the shortest-path
subproblem can be modified easily (simply by removal of arcs from the underlying
graph) without breaking the structure of the problem.

4 Bounds comparison

The treatment of a node of the Branch-and-Price tree ends when no more columns
can be priced out. Then the optimal value of the relaxed master problem is a lower
bound for the integer problem for the current branch. The quality of those bounds
is important, as they make it possible to prune the search tree by fathoming nodes
with bad lower bounds. In this section, we present two techniques that can improve
the quality of the relaxations. The first one consists of adding cutting planes to
the relaxation; it has already been widely documented. The second one is based
on an elementary shortest-path subproblem.

When we use SPRCTW (that is, shortest path with resource constraints and
time windows), we denote the complete master problem as MP. When we use
ESPRCTW (that is, elementary shortest path with resource constraints and time
windows), we denote the complete master problem as EMP. When we remove
the integrality constraints from MP, we denote it as RMP. When we remove the
integrality constraints from EMP, we denote it as REMP.

4.1 Simple example

As an example, let’s take a problem with two visits, i and j, very far from the
depot d. Let’s suppose that:

d(d, i) = d(d, j) = 100

d(i, j) == 1

Moreover, let’s suppose that capacity and time windows are large. The optimal
relaxed solution for EMP is obviously made of the unique route d− i−j−d so that
LBelem = 201. When cycles are allowed, any legal route of the form d−(i−j)n−d,
with i− j repeated n times, (which cost is 200 + 2n− 1) can be part of a solution
with master value 1/n, providing a bound LB = 200/n + 2 − 1

n where n is only
limited by the capacity of the vehicles. Such a route is shown in Figure 1.

8

1

d

2

Figure 1: Solution for the VRP example

4.2 Use of cuts

The most widely used method to improve the solution obtained from the relaxed
problem is to add cutting planes such as the k-path cuts, also known as subtour
cuts when k = 1. This family of cuts is discussed in details in [Koh95].

Let S be a set of visits, δ(S) the set of outgoing arcs from S (that is, δ(S) =
{(i, j) ∈ A/i ∈ S, j 6∈ S}) and µp

S the number of arcs that path p has in δ(S).
With various techniques, it might be possible to demonstrate that the visits from
this set cannot be covered with fewer than κ(S) vehicles. It is thus possible, for
any k ≤ κ(S) to add a new constraint, known as k-path cut, on the variables λ
corresponding to routes containing at least one visit from the set:

∑

p∈Ω

µp
Sλp ≥ k,

It is clear that whichever set S is used, we always have κ(S) ≥ 1. Subtour cuts
(i.e. those for k = 1) are hence easy to use as no previous result has to be found
to prove their validity. The subtour cut applied to our previous example with the
set S = {i, j} provides a flow of 1/n and would then be violated. Adding the cut
for this set would improve the lower bound.

However, the bound obtained with MP plus subtour cuts is not equivalent to
the bound obtained with EMP. It has been demonstrated in [Koh95] that using
ESPRCTW implies that no subtour cuts would be violated. The converse is not
true.

Let’s illustrate this idea with another example. Suppose we have three visits
i, j, and k. The following set of routes can be taken each with the value 1

2 .

d− j − k − d

d− i− j − k − i− d

Even if this solution does not violate any subtour cuts, it contains a cycle and
hence would not be solution of the EMP.

Finally, we have to remember that even if ESP is harder to solve, when we
use cutting planes, we also have to use some other complex algorithm in order to
isolate the violated cuts to be added to the relaxation.

9

4.3 Use of elementary paths

The constraints of MP and EMP being identical and the sets of columns being
included one in the other, it is clear that MP is a relaxation of EMP, and RMP is
a relaxation of REMP. We saw before that MP and RMP have the same integer
solutions. Such a nice result is not true for RMP and REMP, but the relaxation
relation implies that the bound obtained with REMP is at least of the same quality
as the one obtained with RMP. It might even occur that this tighter relaxation may
be integer. Such was the case for almost half the instances we closed using this
method. This quality is clearly illustrated in our simple example.

Our idea is thus to use ESPRCTW for the subproblems. This problem being,
in theory, much more complex, we have to use an implementation offering a good
compromise between worst practical efficiency of the algorithm and better quality
of bounds.

5 Elementary shortest path

In this section, we propose several modifications to the labeling algorithm for the
elementary path problem.

Two main differences apply:

1. A partial route cannot be continued with a node already present in the partial
path.

2. A label cannot be directly fathomed using the usual dominance rule.

The first item means that a partial path ending at i can be prolonged to j only
if j has not yet been visited by the partial path. If we denote the set of nodes of
the partial path p as V (p), we cannot prolong p to j if we already have j ∈ V (p).

The second item is the principal difficulty. Indeed, even if some partial path
p1 dominates some other partial path p2, a continuation of p2 with some visit
i ∈ V (p1) might be useful later. Here, we must keep p2 as p1 can not be applied
the same promising prolongation as in the proof of the dominance rule. In fact, an
easily modified dominance rule would be not to fathom any labels and keep them
all. Even if this tactic would in theory lead to the optimal elementary path, it
is intractable in practice. This practical difficulty seems to be the reason why a
relaxation of SPRCTW is accepted.

Our objective is then to improve the dominance rule. The new dominance rule
should allow us to fathom as many partial paths as possible with the security that
they are not part of the optimal solution, and it must allow us to fathom them as
fast as possible.

5.1 A preliminary modified dominance rule

The basic dominance rule cannot ensure that p2 cannot be continued any better
than p1, because p2 may perhaps be continued with a node already visited in
p1, but that node cannot be added to p1. A modified dominance rule (already
proposed in [DD86]) is then used where the sufficient condition for a partial path
p1 to dominate another partial path p2 is to respect the previous conditions (13)
and (14), and to have its set of visits V (p1) included in the set V (p2).

V (p1) ⊆ V (p2) (15)

10

Obviously, this basic new dominance rule will allow many labels to be created.
Indeed, when two partial paths are such that the sets of their visits are not in-
cluded one in the other (and hence condition (15) cannot be respected) then no
dominations will be applicable between their prolongations.

We thus introduce different improvements to this rule, both complete and
heuristic modifications.

5.2 Exact improvement of the dominance rule

If a partial path p2 does not contain some visits of another path p1, the new
dominance rule will always keep its label, independently of the value of the resources
accumulation, cost, and reduced cost. The reason is simply that the reduced cost
of some extension of p2 could become favorable when going through one of the
visits of p1. This sufficient rule to keep labels is obviously not necessary. It is
possible to improve the dominance rule by estimating the expected improvement
of reduced cost that could be obtained by going thought some visits of p1.

Let p1 and p2 be two partial paths ending at the same node m. V (p) is the set
of nodes visited by the partial path p.

In the case that V (p1)\V (p2) = ∅ and p1 dominates p2 according to the orig-
inal dominance rule, there is no specific problem. This situation shows the new
dominance rule in its best case.

Note also that we may not consider some element n ∈ V (p1)\V (p2) in the case
where it cannot be appended to p2 in any way. Indeed, if there is some resource
l such that Dl

2 + dl(m,n) > bl
n, it will be impossible to add n. We use here the

property of the triangle inequality.
Let’s now consider different approximations when V (p1)\V (p2) = {n}:

1. bound on improvement with πn. Since p∗2 is an extension of partial path p2,
it is possible to create an extension p∗1 of p1 in the same way, except for n.
Using i and j the previous and next node of n in p∗2, we would thus have:

rc∗2 − rc∗1 = c(i, n) + c(n, j)− c(i, j)− πn + rc2 − rc1

Hence p∗2 is better than p∗1 if and only if:

c(i, n) + c(n, j)− c(i, j)− πn + rc2 − rc1 < 0

By underestimating the cost part (which is always positive due to the triangle
inequality), a sufficient condition to eliminate p2 is:

−πn ≥ rc1 − rc2 (16)

2. bounds on improvement with πn−minAddedArcCostn. Here, we use a better
approximation of the cost part and underestimate it using:

minAddedArcCostn = mini∈prec(n),j∈succ(n) (c(i, n) + c(n, j)− c(i, j))

where prec(n) is the set of possible predecessors, and succ(n) is the set of
possible successors of node n. These quantities can be calculated at the
initialization of the algorithm for each node n. The sufficient condition is
thus:

minAddedArcCostn − πn ≥ rc1 − rc2 (17)

11

The two conditions (16) and (17) can then be used to fathom more labels.
These conditions can be generalized to the case where Card(V (p1)\V (p2)) > 1.

However, in practice, it is difficult to find good bounds. We restricted our
algorithm to the case where Card(V (p1)\V (p2)) ≤ 2.

5.3 Heuristic improvements of the algorithm

Solving an elementary shortest-path problem with the dominance rule defined in
5.1 is really time-consuming. Even using all the improvements introduced in the
previous section, our subproblem might take much time to find only a few new
columns. In fact, at the beginning of the treatment of a branch-and-bound node,
obtaining a route with negative reduced-cost might not require completeness of the
algorithm. We propose in this section some heuristic reductions of the ESPRCTW
that can be used in combination with the complete algorithm.

5.3.1 Simple heuristically reduced algorithm

An easy way to obtain a faster heuristic version of our algorithm is to use only
item 1 of the differences presented in Section 5 (i.e., it does not allow the extension
of a route with any already visited node) but do not modify the dominance rule.
Only elementary paths are generated then, but a label can be removed even if the
cycle constraint would make it part of the optimal full elementary path. When
this algorithm does not return any columns with negative reduced cost, it does not
mean that no such column exists, as some partial path might have been erroneously
eliminated.

We then use a procedure that consists of relying on the heuristic algorithm as
long as it is able to provide new negative reduced-cost routes, and when that is no
longer possible, we use the complete version. When the complete version also fails
to find a valid new column, the treatment of the node is finished.

5.3.2 Dominance levels

There is a noticeable gap between the two versions of the algorithm used in the
previous procedure. Sometimes, the heuristic version quickly ends without return-
ing any new columns, but the execution of the complete version would still be very
time consuming. We introduced a parameter to try to control the correctness of
the algorithm almost continuously. The parameter DominanceLevel defines the
length (i.e. number of nodes) of partial paths after which the complete new dom-
inance rule is applied. If the partial path is shorter, the heuristic rule is applied.
Then the two versions of the algorithm (heuristic and complete) defined before
correspond respectively to the two extreme values ∞ and 0 of DominanceLevel.
The procedure now consists of starting with a huge value for DominanceLevel,
and then decreasing it when no new column can be found.

5.3.3 Graph reductions

As proposed in other publications for the problem of a shortest path with cycles
(e.g. [DDS99]), the visit graph can be heuristically reduced in order to accelerate
the algorithm. We eliminate arcs with respect to their distance for some resource.

12

Different criteria have been used, such as:

dl(i, j) ≥ percent ∗maxk∈succ(i)d
l(i, k)

dl(i, j) ≥ (1 + percent) ∗mink∈succ(i)d
l(i, k)

As in previous reductions, we increase the percentage of graph kept when no
new path is found.

We note that the three procedures previously defined are globally complete
(i.e., no column is forgotten), even if at some point they use a heuristic version of
the elementary shortest-path algorithm, as the full version is run in case of failure.

5.4 Implementation-oriented improvements

The previous subsection introduced some algorithmic improvement to the global
pricing procedure for an elementary shortest path. We present here some ideas
that we used to implement it in an efficient manner.

5.4.1 Storage of labels

As we use many successive runs of slightly modified and limited versions of the
algorithm, much time could be used in the warm up of the algorithm, i.e., in the
re-creation of many labels already present at the end of previous run. We thus
used storage of labels as an incremental tool. This storage can be filled with labels
from any of the algorithms used, and then used to fill in a new algorithm with the
actual labels before it is run.

5.5 Other improvements

Several other improvements have been used that had yet been proposed before :

• Time-window based graph reduction :
As proposed in [DD86], we removed from the set of possible arcs those made
impossible for reasons based on time windows. If the condition:

al
i + dl(i, j) > bl

j

is satisfied for a resource l, then the arc (i, j) cannot be part of any solution
path. It can be removed from the initial graph.

• Minimal number of paths :
As proposed in [Lar99], we stop the execution of the algorithm when a fixed
minimal number of paths and labels have been generated. This reduction is
particularly interesting as when no path is found, we know such a path does
not exist, and we do not have to rerun another version of the algorithm.

• Reduced-cost based graph reduction :
Finally, as proposed in [RGP02], we also reduce the initial graph, taking into
account reasons based on reduced cost.

13

Instances nbVisits LB−LB(1)
LB(1)

LB(2)−LB(1)
LB(1)

LB−LB(1)
OPT−LB(1)

LB(2)−LB(1)
OPT−LB(1)

R1 50 0,38% 0,33% 23,56% 36,86%
R1 100 0,32% 0,15% 13,95% 15,59%
RC1 50 0,55% 8,89% 11,62% 53,03%
RC1 100 0,55% 1,82% 3,06% 38,77%

Table 1: Lower bounds for series 1

6 Computational results

6.1 Solomon’s benchmark

We worked on the Solomon instances [Sol87], which are widely used both for exact
and heuristic methods applied to the VRPTW. We followed the common con-
ventions used for exact methods: minimizing only the distance, distances and
durations use Euclidian distances between pairs of coordinates rounded to first
lower decimal. Two series of instances exist, and the first series has smaller time
windows. This series is thus easier to solve, as more constrained. Many studies
concentrate their effort on this series. We give results mainly about the second
series. We focused our interest there as it contains most of the still open instances.
Instances are also divided in three classes: class ”C” in which visits are clustered,
class ”R” where visits are randomly distributed, and class ”RC” with mixed dis-
tributions. Each instance is a problem of 100 visits from which are extracted two
smaller problems using the first 25 and 50 visits.

6.2 Bounds

When no more new columns can be priced out, a solution of the relaxed restricted
master problem is a lower bound for the current Branch-and-Price branch.

In the case of the root node, we obtain a global lower bound for the complete
problem. When working on a subproblem with only elementary paths, we solve a
more constrained problem, and the bounds obtained are theoretically better. In
Table 1, we compare the bounds obtained on series R1 and RC1 with those given
in [CR99]. The two comparisons given are:

• between our lower bound LB and LB(1) from [CR99], corresponding to to a
subproblem forbidding only cycles with the form i− j − i.

• between LB(2) and LB(1) from [CR99]. LB(2) corresponds to LB(1), plus
the addition of subtour and 2-path cuts at the root node.

We can see in this table that our lower bound is indeed better than the one
obtained with non-elementary paths. On average, the gap between our lower bound
and the optimal solution is 17% smaller than the gap between LB(1) and the
optimal solution. The same calculation would give 47% with LB(2) and suggests
that the use of cutting planes could be added to our algorithm.

At other nodes, lower bounds allow us to prune the search tree and reduce the
total time needed to find and prove optimal solutions. This consequence, among
others, allowed us to close some open instances. Table 2 provides more details
about the improvements of lower bounds obtained for some instances of series 2.

14

The bold lines correspond to the instances we closed. Our improved bounds for
most of the RC2 instances we closed correspond to an integral solution, and no
branching is needed.

Instance nbVisits LB LB(1) OPT LB−LB(1)
LB(1)

LB−LB(1)
OPT−LB(1)

R204 25 350,47 337,025 355,0 3,99% 74,80%
R208 25 328,20 321,752 328,2 2,00% 100,0%
R201 50 791,90 788,625 791,9 0,42% 100,00%
R202 50 698,50 694,162 698,5 0,62% 100,00%
R203 50 598,58 592,383 605,3 1,05% 48,00%
R205 50 682,85 668,524 690,1 2,14% 66,40%
R206 50 626,34 613,445 632,4 2,10% 68,05%
R209 50 599,83 585,939 600,6 2,37% 94,75%
R210 50 636,10 627,385 645,6 1,39% 47,85%
R201 100 1140,30 1139,746 1143,2 0,05% 16,04%
RC203 25 326,90 220,182 326,9 48,47% 100,0%
RC204 25 299,70 191,221 299,7 56,73% 100,0%
RC208 25 269,10 163,009 269,1 65,08% 100,0%
RC201 50 684,80 678,867 684,8 0,87% 100,0%
RC202 50 613,60 516,619 613,6 18,77% 100,0%
RC203 50 555,30 421,146 555,3 31,85% 100,0%
RC205 50 630,20 567,970 630,2 10,96% 100,0%
RC206 50 610,00 447,305 610,0 36,37% 100,0%
RC207 50 558,60 395,725 558,6 41,16% 100,0%
RC201 100 1255,94 1244,456 1261,8 0,92% 66,22%
RC202 100 1088,08 1012,616 1092,3 7,45% 94,70%
RC205 100 1147,61 1063,922 1154,0 7,87% 92,90%

Table 2: Lower bounds for some series 2 instances

6.3 Optimality: new instances closed

Table 3 gives our results for 17 Solomon instances previously open for which we
found and proved optimal solutions. Also given: the value of the optimal solution
(OPT column), the number of vehicles used, the relative difference between lower
bound at the root node and optimal solution (gap column), the number of explored
nodes, the number of solved subproblems (SP column), the time to find the optimal
solution and the time to prove the optimality.

The given timings have been obtained using a 1,5 Ghz Pentium IV with 256 Mo
and using ILOG JNI CPLEX 7.5, ILOG JSolver 1.0 and the JVM from IBM for
Linux version 1.3.0.

The instances noted with (∗) and (∗∗) are those for which we found a better
optimal solution that those given by [Lar99] et [KLM01], respectively. On those
instance, our results have been validated by Jesper Larsen, indicating theirs are
hence not optimal.

15

Instance OPT V Gap (%) N SP Topt Tproof

R203.50 605,3 5 1,11 15 432 117,8 3320,9
R204.25 355,0 2 1,27 17 365 88,4 171,6
R205.50∗∗ 690,1 4 1,05 95 1551 301,4 531,0
R206.50 632,4 4 0,96 67 1319 2972,8 4656,1
R208.25∗ 328,2 1 0,00 1 64 705,7 741,5
R209.50 600,6 4 0,13 5 144 120,8 195,4
R210.50 645,6 4 1,47 977 16183 25151,1 65638,6
RC202.50 613,6 5 0,00 1 70 5,3 13,0
RC202.100 1092,3 8 0,39 39 1861 18053,8 19636,5
RC203.25∗ 326,9 3 0,00 1 65 4,0 5,1
RC203.50 555,3 4 0,00 1 315 4479,4 4481,5
RC204.25 299,7 3 0,00 1 58 1,95 13,0
RC205.50∗ 630,2 5 0,00 1 82 10,3 10,6
RC205.100 1154,0 7 0,55 71 2706 3131,6 15151,7
RC206.50 610,0 5 0,00 1 61 8,6 9,4
RC207.50 558,6 4 0,00 1 107 66,0 71,1
RC208.25 269,1 2 0,00 1 185 32239,3 33785,3

Table 3: The Solomon instances we closed.

Conclusion

In this article, we returned to the Dantzig-Wolfe decomposition of the Vehicle Rout-
ing Problem. The elementary shortest-path subproblem involved in the resulting
column generation has been, as far as we know, always relaxed to a shortest-path
problem where more efficient algorithms are available. We propose several im-
provements to the usual elementary shortest-path algorithm. We also show that
the benefits of using elementary shortest-path might be practically useful when this
modified algorithm is used. Indeed, better bounds are found, and new instances
can be closed.

As already mentioned, another way of improving the lower bounds which led
us to find new optimal solutions is to use cutting planes. A logical continuation
of this work would be to combine the two proposals. Also, we provide results in
[CDP02] about how our work can cooperate with other techniques such as local
search.

7 Acknowledgements

This work is partially the result of wider investigations on collaborative algorithms
for Vehicle Routing Problems done in collaboration with Emilie Danna and Claude
Le Pape. Many interesting discussions with Javier Lafuente also contributed to
the development of the ideas presented here. We also thank Jesper Larsen, who
validated the corrections found on some optimal solutions, and Kathleen Callaway
for the proofreading.

16

References

[BH01] R. Bent and P. Van Hentenryck, A two-stage hybrid local search for
the vehicle routing problem with time windows, Tech. Report CS-01-06,
Brown University, septembre 2001.

[BJN+98] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh,
and P. H. Vance, Branch-and-price: column generation for solving huge
integer programs, Operations Research 46 (1998), 316–329.

[CDD+99] J.F. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Salomon, and
F. Soumis, The vrp with time windows, Les Cahiers du GERAD (1999),
no. G-99-13.

[CDP02] A. Chabrier, É. Danna, and C. Le Pape, Coopération entre génération
de colonnes et recherche locale appliquée au problème de routage de
véhicules, JNPC, 2002.

[CLM01] J.-F. Cordeau, G. Laporte, and A. Mercier, A unified tabu search
heuristic for vehicle routing problems with time windows, Journal of
the Operational Research Society 52 (2001), 928–936.

[CR99] W. Cook and J.L. Rich, A parallel cutting-plane algorithm for the ve-
hicle routing problem with time windows, Tech. Report TR99-04, De-
partment of Computational and Applied Mathematics, Rice University,
May 1999.

[DD86] Y. Dumas and J. Desrosier, A shortest path problem for vehicle rout-
ing with pick-up, delivery, and time windows, Les Cahiers du GERAD
(1986), no. G-86-09.

[DDS92] M. Desrochers, J. Desrosiers, and M. Solomon, A new optimization al-
gorithm for the vehicle routing problem with time windows, Operations
Research 40 (1992), 342–354.

[DDS99] G. Desaulniers, J. Desrosiers, and M. M. Salomon, Accelerating strate-
gies in column generation methods for vehicle routing and crew schedul-
ing problems, Les Cahiers du GERAD (1999), no. G-99-36.

[Des88] M. Desrochers, An algorithm for the shortest path problem with resource
constraints, Les cahiers du GERAD (1988), no. G-88-27.

[DFS+00] B. De Backer, V. Furnon, P. Shaw, Ph. Kilby, and P. Prosser, Solving
vehicle routing problems using constraint programming and metaheuris-
tics, Journal of Heuristics 6 (2000), 501–523.

[Dro94] M. Dror, Note on the complexity of the shortest path models for column
generation in vrptw, Operations Research 42 (1994), 977–978.

[DW60] G.B. Dantzig and P. Wolfe, Decomposition principle for linear pro-
grams, Operations Research 8 (1960), 101–111.

[FDGG02] D. Feillet, P. Dejax, M. Gendreau, and C. Gueguen, An exact algorithm
for the elementary shortest path problem with resource constraints :
Application to some vehicle routing problems, 2002.

[GTA99] L.M. Gambardella, É. Taillard, and G. Agazzi, MACS-VRPTW: A
multiple ant colony system for vehicle routing problems with time win-
dows, New Ideas in Optimization (David Corne, Marco Dorigo, and
Fred Glover, eds.), McGraw-Hill, London, 1999, pp. 63–76.

17

[HG99] J. Homberger and H. Gehring, Two evolutionary metaheuristics for the
vehicle routing problem with time windows, INFOR 37 (1999), 297–318.

[KLM01] B. Kallehauge, J. Larsen, and O.B.G. Madsen, Lagrangean duality and
non-differentiable optimization applied on routing with time windows
- experimental results, Tech. Report IMM-TR-2001-9, Department of
Mathematical Modelling, Technical University of Denmark, Lyngby,
Denmark, August 2001.

[Koh95] N. Kohl, Exact methods for time constraints routing and scheduling
problems, Ph.D. Thesis, Institute of Mathematical Modelling, Technical
University of Denmark, Lyngby, Denmark (1995).

[KPS00] Ph. Kilby, P. Prosser, and P. Shaw, A comparison of traditional and
constraint-based heuristic methods on vehicle routing problems with side
constraints, Constraints 5 (2000), no. 4, 389–414.

[Lar99] J. Larsen, Vehicle routing with time windows - finding optimal solutions
efficiently, http://citeseer.nj.nec.com/larsen99vehicle.html, 1999.

[RGP99] L.-M. Rousseau, M. Gendrau, and G. Pesant, Using constraint-based
operators in a variable neighborhood search framework to solve the ve-
hicle routing problem with time windows, CP-AI-OR (1999).

[RGP02] L.-M. Rousseau, M. Gendreau, and G. Pesant, Solving small VRPTWs
with constraint programming based column generation, CP-AI-OR,
2002, pp. 333–344.

[RT95] Y. Rochat and E. Taillard, Probabilistic diversification and intensifica-
tion in local search for vehicle routing, Journal of Heuristics 1 (1995),
147–167.

[Sha98] P. Shaw, Using constraint programming and local search methods to
solve vehicle routing problems, Principles and Practice of Constraint
Programming, 1998, pp. 417–431.

[Sol87] M.M. Solomon, Algorithms for the vehicle routing and scheduling prob-
lem with time window constraints, Operations Research 35 (1987), 254–
265.

18

